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Abstract—Visual Crowdsensing (VCS), which leverages 

built-in cameras of smart devices to attain informative and 

comprehensive sensing of interesting targets, has become a 

predominant sensing paradigm of mobile crowdsensing 

(MCS). Compared to MCS tasks using other sensing 

modalities, VCS faces numerous unique issues, such as 

multi-dimensional coverage needs, data redundancy 

identification and elimination, low-cost transmission, as 

well as high data processing cost. This paper characterizes 

the concepts, unique features, and novel application areas 

of VCS, and investigates its challenges and key techniques. 

A generic framework for VCS systems is then presented, 

followed by discussions about the future directions of 

crowdsourced picture transmission and the experimental 

setup in VCS system evaluation.  

 
Index Terms—Visual crowdsensing; mobile crowdsensing, 

object imagery; data selection; visual data understanding; crowd 

intelligence.  

I. INTRODUCTION 

With the development of smartphone sensing, wearable 

computing, and mobile social networks, a new sensing 

paradigm called Mobile Crowd Sensing (MCS) [1, 2], which 

leverages the power of regular users for large-scale sensing, has 

become popular in recent years. Data collected onsite in the real 

world, combined with the support of the backend server where 

data fusion takes place, makes MCS a versatile platform that 

can often replace static sensing infrastructures. 

MCS can make use of different modalities of sensing, e.g. 

numeric values (e.g., air quality [3], GPS coordinates [4]), 

audios, and pictures/videos. Among these modalities, visual 

crowdsensing (VCS) that uses built-in cameras of smart 

devices has become increasingly popular. VCS asks people to 

capture the details of interesting objects/views in the real world 

in the form of pictures or videos. It has attracted considerable 
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attention recently due to the rich information that can be 

provided by images and videos. Previous projects, e.g. 

CreekWatch [5], GarbageWatch [6], PhotoNet [7], PhotoCity 

[8], WreckWatch [9], FlierMeet [10], and Mediascope [11], 

indicate that VCS is useful and in many cases superior to 

traditional visual sensing that relies on deployment of 

stationary cameras for monitoring. 

Compared to other sensing modalities (e.g., numeric values, 

audios) in MCS, images/videos are more informative (e.g., rich 

objects captured), richer in associated contexts (e.g., shot size, 

shooting angles), larger in data item size, and more complex on 

data processing. Furthermore, VCS faces several unique issues, 

such as multi-dimensional coverage needs, data redundancy 

identification and elimination, low-cost transmission, and high 

data processing cost. Though VCS has been used in many 

applications, there has been no comprehensive investigation of 

this field. In our previous work [1], a systematic review of 

generic MCS concepts, applications, and research issues are 

presented. However, it did not characterize the unique features 

and challenges of VCS, the rich VCS applications and 

associated techniques are not investigated as well. To this end, 

this paper aims to provide a thorough review of the research 

issues and state-of-the-art techniques, and present our insights 

of VCS. In particular, we have made the following 

contributions. 

(1) Characterizing the concepts and features of VCS, 

including its working process, data coverage and redundancy, 

crowd-object interaction, and crowd intelligence. A generic 

concept model is further presented. 

(2) Reviewing existing VCS applications on object imagery 

and profiling, visual event sensing, disaster relief, localization, 

indoor navigation, and personal wellness. 

(3) Investigating the challenges and key techniques of VCS 

including diversity-oriented task allocation, data selection and 

redundancy elimination, opportunistic visual data transmission, 

energy-efficient and reliable communication, image matching 

and processing, picture quality estimation, and visual data 

understanding. 

(4) Presenting our efforts and the future trends of VCS, 

giving a generic framework for VCS systems, discussing the 

future direction on integrating with new communication 

techniques, using crowd intelligence for crowdsourced visual 

data understanding, and summarizing the experimental setup in 

VCS evaluation. 

The remaining paper is organized as follows. In Section II 

and III, we characterize the unique features of VCS. Section IV 
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classifies various novel applications enabled by VCS, followed 

by the challenges and key techniques discussed in Section V. 

Our insights and future research directions are discussed in 

Section VI. We conclude the paper in Section VII. 

II. VISUAL CROWDSENSING: AN OVERVIEW 

Before tackling the technical details, we first present an 

overview of the development of VCS, its relationship with 

mobile crowdsensing, and its generic working process. 

A. The Development of VCS 

In [12], Sheng et al. present the sensing as a service (S
2
aaS) 

concept, which refers to smartphone-based sensing service 

provision via a cloud computing system. Mobile crowdsensing 

(MCS) presents a new sensing paradigm leveraging the power 

of mobile devices, which is a promising research area under the 

S
2
aaS concept. According to [1], MCS is formally defined as: 

the ability to acquire local knowledge through 

sensor-enhanced mobile devices and the possibility to share 

such knowledge within the social sphere, practitioners, 

healthcare providers, and utility providers.  

Visual Crowdsensing (VCS) is a specific form of MCS, 

which tasks people to capture the details of interesting 

objects/views in the real world in the form of pictures or videos. 

Following are several representative applications of VCS. 

SeeClickFix
1
 allows people to report neighborhood issues (e.g., 

road collapse, public facility damages) to local government 

bodies in the forms of pictures or videos. PhotoCity [8] relies 

on the citizens to collaboratively acquire urban imagery (e.g., 

3D street views) at a large scale. Movi [13] identifies highlights 

or interesting scenes from crowd-contributed videos to generate 

a visual summary of an event through collaborative sensing. 

There have been other types (e.g., texts, audios) of 

multimedia applications of crowdsensing [14]. For instance, 

Sakaki et al. [15] investigate the real-time interaction of events 

(e.g., earthquakes) in Twitter and propose an algorithm for 

event detection by mining crowd-contributed tweets. 

NoiseTube [16] is an audio-based system for citizens to 

measure their personal exposure to noise in their daily lives and 

 
1 https://seeclickfix.com/ 

participate in the creation of noise maps. The difference 

between VCS and other crowdsourcing multimedia systems is 

that visual contents, i.e., pictures/videos, generally have high 

dimensional feature space and high transmission cost, resulting 

in significant burdens on computation and communication. In 

addition to spatial-temporal coverage needs, VCS tasks usually 

have more semantic coverage requirements (e.g., shooting 

angle and shot size), which raises new issues on task allocation 

and data quality measurement. 

B. The Generic Work Flow of VCS Tasks 

Data collection of a VCS app is usually conceptualized as a 

task in a traditional multi-task crowdsourcing platform, such as 

Amazon’s Mechanical Turk (MTurk) [17] and Medusa [18]. A 

VCS task can be characterized by a generic four-stage process, 

as depicted in Fig. 1: task initiation, task execution, data 

aggregation, and result delivery. At the task initiation stage, 

data requesters define their tasks with different requirements 

and the task management server allocates the tasks to suitable 

workers or workers select their tasks by their own. At the task 

execution stage, workers take pictures or videos according to 

task requirements and upload them to the backend server. Since 

the server receives pictures/videos uploaded by distributed 

workers intermittently, it is inevitable that there can be 

redundancy in pictures/videos and some user-contributed data 

items may be of low quality. As such, at the data aggregation 

stage, pictures/videos are grouped, filtered, and selected based 

on task specifications and data quality. In the result delivery 

stage, the data after preselection is made available to the data 

requesters upon task completion. 

III. CHARACTERIZING VISUAL CROWDSENSING 

In this section, we introduce VCS as a special paradigm of 

MCS, emphasize on its unique characteristics compared with 

MCS using other sensing modalities, and formally define the 

concept models of VCS. 

A. Data-Centric Crowdsourcing and Crowd-Object Interaction 

 
Fig. 1. VCS work flow. 



IEEE COMMUNICATIONS SURVEYS & TUTORIALS, 2017 3 

The ever increasing participants of crowdsourcing contribute 

large volume of data. Intelligently analyzing and processing 

crowdsourced data can maximize the usable information, thus 

paying back to the crowd.  

There are several issues regarding crowdsourced visual data 

processing. First, the pictures/videos contributed by users are 

usually huge in quantity, while they vary in quality and 

reliability. Some people contribute accurate information (e.g., 

clear pictures) while others do not. Second, data from 

distributed ‘human sensors’ are often redundant, e.g., pictures 

taken nearby can be highly-duplicate. Third, crowd-contributed 

pictures/videos often contain rich associative information, such 

as geo-tags and picture-shooting contexts. These features make 

it challenging to analyze and understand crowd-contributed 

visual data. Existing methods are mostly based on the data itself. 

Analyzing the content of huge volume of data is usually 

computationally intensive and thus works poorly in many 

cases.  

Generally speaking, VCS tasks are about crowd-object 

interaction, where people generate data about sensing objects 

in the real world. An in depth analysis of VCS (see Fig. 2) 

reveals three layers of information, including content, 

interaction context, and community context.  

 Content refers to user-contributed pictures/videos.  

 Interaction context. It refers to the relationship between 

human and data, i.e., how the data is contributed by 

human workers, such as time/space, interaction patterns.  

 Community context. For a selected crowdsourced data set, 

there will be an associated community that participates in 

data contribution. Community contexts refer to the 

information regarding the community and its members, 

such as individual profiles or interests, social relationships, 

interaction dynamics. 

Here, we term the interaction and community contexts as 

crowd intelligence. Crowd intelligence refers to aggregated 

human intelligence, which is formally defined as: the context 

information generated during human-object interaction 

process or the associative information about the community 

and its members who contribute data. In other words, crowd 

intelligence refers to the associative “information” (about the 

crowdsourcing task data) that can be obtained from the 

crowd-object interaction process and the relevant contributors. 

Later we will study how to measure and use them to facilitate 

crowdsensed visual data understanding. 

B. Task Coverage and Data Redundancy  

A VCS task may need the front, side, or back view of an 

object. Only knowing the location of the object is not sufficient, 

it is better to view it from multiple angles to obtain omnibus 

information. This is quite different from traditional sensor 

coverage, where the relative angle of sensors and targets does 

not matter because a target is considered covered as long as it is 

inside the sensing range of a sensor.  

Definition of Task Coverage. According to different task 

needs, coverage may vary in meanings. It is defined at the 

semantic level, using the constraints such as location, shooting 

angle, and shot size. We define the coverage in VCS at both 

macro and micro levels.  

 Macro coverage. It refers to the coverage of Point of 

Interests (PoIs) [19] defined by tasks. As shown in Fig. 3 

(a), three pictures p1, p2 and p3 all have the same macro 

coverage to PoI O. Therefore, if we want to have the 

information of the PoI at the macro coverage level, we can 

choose any one of them to complete the task. The situation 

is similar when we change pictures to video clips. 

 Micro coverage. It refers to multi-dimensional aspects of 

a PoI. As shown in Fig. 3 (b), three pictures p1, p2 and p3 

have different aspect coverage to the object at point O 

from different directions. If the task only requires two 

pictures, then {p1, p3} will have the largest micro coverage. 

However, if the task requires 360-degree coverage, then 

 
Fig. 2. Human and data-centric crowdsourcing: a deep insight. 

 Fig. 3. (a) For point coverage, the PoI O can be covered by photos p1, p2 
or p3. (b) For aspect coverage, aspect coved by p1 is assessed by degree of 

AoB. CoD is for p2 and DoE is for p3. 
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{p1, p2, p3} are all valuable and a picture that can cover 

AoE is still needed. 

 

The macro and micro coverage is similar to the point and 

aspect coverage concepts proposed by Wu et al. [20] and Wang 

et al. [21].  

Definition of Data Redundancy. With coverage definition, 

there can be several pictures that cover the same point or aspect, 

resulting in data redundancy. The notion of redundancy is 

subjective, and more importantly, ultimately depends upon the 

intended use of the data or the definition of “coverage” in VCS 

tasks. For example, suppose that we have two pictures of the 

same building, if the goal is to detect the building, they are 

redundant; but if we want to provide a panoramic view of the 

building, they are not redundant. Furthermore, suppose that we 

have two video clips about an event from different locations. If 

the goal is only to detect the happening of the event, they are 

redundant; but if we want to characterize the event from 

different shooting angles, they are not redundant. 

According to different task requirements, redundancy can 

have distinct meanings and can be roughly categorized into the 

following two types.  

 Content-redundancy (ConR). This refers to the visual 

similarity among pictures or video frames based on visual 

features such as SIFT [22], color histogram [23]. 

 Semantic-redundancy (SemR). The similarity is defined 

at the semantic or contextual level, using features such as 

location [7, 24] or shooting angle [25]. For example, 

different buildings may look alike in pictures, but if their 

locations are different, there is no SemR because they 

carry distinct information. 

C. VCS Concept Modeling 

A VCS system is built on three key concepts, namely task, 

user, and data. We build a triple concept graph to characterize 

their underpinnings and relations in Fig. 4. 

Task model. We propose a generic task model to 

characterize VCS tasks: Task=<time, PoIs, w_num, c_set>. 

Here, time is a valid period for performing the task, including 

the start time and the end time; PoIs refer to the target sensing 

areas. w_num refers to the number of workers needed for the 

task. c_set is the task-dependent constraint set. There are 

several often-used constraints. For example, cg is a 

geographical distance threshold, and data sensed within the 

range of cg could be semantically redundant; ct refers to the 

data sampling interval, and the data within the same interval 

can be considered redundant. There are constraints specific to 

pictures/videos, e.g., ca – the minimum orientation discrepancy 

of pictures/videos of the same target. Incentives are also 

important for a VCS task, and the task requester can state 

his/her budget for the task. 

User model. The VCS tasks are conducted by participants, 

and thus we have the user model to characterize the participants. 

One relates to user profile, such as user name, age, profession, 

skills, interests, and preferences. The other refers to various 

user contexts, such as spatio-temporal contexts, mobility 

patterns, and social relations. The user model helps recruit 

appropriate workers to perform VCS tasks. It is also important 

for supporting user cooperation. 

Data model. Each picture item p submitted is modeled as 

p=<wid, cont, t, l, context_s>. Here, wid refers to the worker id 

of the contributor; cont refers to the visual content; t and l 

denote when and where the data is obtained; context_s 

represents optional contexts of the picture/video. There are six 

often used contexts. 

 The shooting angle of a picture or video, represented in 

the form: <azimuth, pitch, roll>, which can be obtained 

from accelerometer and magnetic field sensor readings 

[26]. It is a vector from the camera and vertical to the 

image plane. 

 The ambient light level recorded by the light sensor. 

 The accelerometer readings during photographing.  

 The depth-of-field refers to the distance between the target 

and the camera, which is determined by four parameters: 

focal length, focus distance, lens aperture, and circle of 

confusion. 

 Field-of-view refers to how wide the camera can see. 

 Effective range of the camera, beyond which people can 

hardly identify anything in the picture. 

When aggregated by the order of sensing time in the backend 

server, the data items form a data stream P. More specifically, it 

consists of a sequence of data items p1,..., pm,... arriving at 

timestamps t1, ..., tm, ...  

 

 Fig. 4. The VCS concept graph. 
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In VCS, a picture stream is generated when pictures are 

being uploaded intermittently to the backend server by 

participants. Pictures contributed later in the stream may be 

semantically or visually similar to previous ones, resulting in 

data redundancy. Since a picture has heterogeneous features 

(e.g., cont, t, l, and context_s in the data model), we use a 

Boolean function 𝒟 in Eq. (1) to measure the degree of 

duplication of two pictures pi and pj. 

 

𝒟(𝑝𝑖 , 𝑝𝑗) = ⋀ ℋ(𝑝𝑖,𝑘 , 𝑝𝑗,𝑘)𝑓=1,…,𝑘,…𝑑  (1) 

 

where f denotes the feature set and pi,k refers to the k-th feature 

value of picture pi. The Boolean function ℋ calculates whether 

two sub-items are similar. The calculation method of ℋ can 

vary for different feature k. For instance, if k denotes locations, 

then ℋ is a method (e.g., Euclidean distance) to determine 

whether two locations are close enough to take similar pictures. 

When aggregating videos about a sensing target (e.g., a 

social event) capturing from different shooting angles or 

distances, data summarization or mashup is often needed. This 

will help choose views/frames from different videos to form a 

comprehensive picture about the sensing target. We discuss the 

details in the next section. 

IV. APPLICATIONS 

To assist in identifying the needs of future VCS, we have 

developed a taxonomy of potential and existing application 

classes.  The first division relates to the objects being sensed: 

stationary objects vs. dynamic events, as presented in Section 

III.A and III.B.  The second division of applications relates to 

the purpose of crowdsourced visual data: disaster relief, indoor 

localization, indoor navigation, personal wellness, and urban 

sensing, as presented in the Sections III.C to III.G. 

A. Stationary Object Imagery and Profiling 

Object imagery uses crowdsensing to quickly make visual 

profiling of a physical object. Typical objects studied widely 

include floor plans, indoor/outdoor scenes, and so on. 

Floor plan generation. The building floor plan is commonly 

used in architecture, showing the top-down view of the spatial 

relationships between rooms, spaces, and other physical 

features of a floor. It is vital for many indoor mobile 

applications, such as localization and navigation. CrowdMap 

[227] generates indoor floor plans by fusion of visual, inertial 

(e.g., gyroscope, accelerometer), as well as spatial information 

crowdsourced from people. Jigsaw [28] firstly uses visual and 

inertial data to infer the spatial relations, and then aggregates 

them to generate indoor floor plans.  

Indoor scene reconstruction. Different from succinctly 

illustrating the floor plan of a building, scene reconstruction is 

to build visually appealing indoor interior views. It is useful for 

many applications such as virtual tours and indoor navigation. 

Existing outdoor street-view reconstruction techniques cannot 

be directly applied to indoor environments, while VCS 

introduces an effective and low-cost way to attain this. Sankar 

et al. [29] develop a smartphone app that lets users capture a 

panorama of indoor scenes. IndoorCrowd2D [30] is a VCS 

system that facilitates indoor scene reconstruction leveraging 

multi-dimensional sensing.  

Outdoor scene reconstruction. There have also been studies 

on outdoor scene reconstruction for providing better 

location-based services. PhotoCity [8] leverages crowdsourced 

pictures for fine-grained building profiling. CrowdPan360 [31] 

uses crowd-sourced pictures to generate 360-degree panoramic 

maps when a user steps into an unfamiliar area. Kim et al. [32] 

develop a set of key-frame selection algorithms to 

automatically generate outdoor panorama using crowdsourced 

sensor-rich videos. RDB-SC [33] assigns visual spatial tasks 

(e.g., landmark profiling) to selected workers to enrich the 

spatial/temporal diversity of crowdsourced visual data. 

B. Dynamic Event Sensing 

With the prevalence of mobile Internet, more and more 

people record real-time events with their smartphones and 

instantaneously share pictures/videos through mobile social 

networks. This helps people quickly learn about the details of 

ongoing events, especially for those instant, ephemeral, and 

small-scale events, such as street performances, social events 

like parties, and meetings. InstantSense [34] leverages people’s 

physical mobility and photographing to locate interesting 

events in real-time and further recount them with multi-grained 

and multi-facet visual summaries. Movi [13] enables 

smartphones to collaboratively sense their ambience and 

recognizes socially interesting events.  

Each smartphone camera is able to capture only a range of 

restricted viewing angle and distance, which produces a rather 

monotonous video clip of an event. By spatial reasoning on the 

relative geometry of multiple video clips being captured from 

different angles and distances, FOCUS [35] can recognize 

shared contents and highlights of an event. With this, FOCUS 

supports real-time analysis and clustering of user-uploaded 

video clips about social events (e.g., a sport game). MoViMash 

[36] investigates how to combine crowdsourced event video 

clips to produce a more interesting and representative mashup 

of the event for sharing. A framework that supports smooth shot 

transitions to cover the performance from diverse perspectives 

is proposed. MoVieUp [37] is also a mobile video mashup 

system by learning film-editing rules from formal user studies. 

Frey and Antone [38] propose a cross-media tracking approach 

that can group crowdsourced mobile videos for event 

reconstruction. 

C. Disaster Relief 

Rapid disaster relief is important to save human lives and 

reduce property loss. Detailed and real-time information about 

the disaster area will help people make critical decisions on the 

assignment of manpower and supplies. The information, 

however, can be contributed by the rescuers, survivors and 

soldiers in the field by using their phones. One critical issue in 

disaster situations is that the network bandwidth is often limited. 

PhotoNet [7], CooperSense [39], and SmartPhoto [25] address 

this problem by only collecting and delivering a representative 

subset of pictures in crowd sensing, considering that a 

significant portion of the pictures may be redundant or 
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irrelevant. CARE [40] designs a framework for better utilizing 

network resources in disaster-affected regions, which can 

detect the semantic similarity between crowdsourced photos. 

SmartEye [41] proposes a QoS-aware in-network deduplication 

scheme to attain efficient data sharing in disaster environments.  

D. Indoor Localization 

The current mainstream indoor localization technologies 

largely rely on RF signatures (WiFi access points [42], RFID 

[43]). Obtaining the signature map usually requires dedicated 

efforts to obtain fine-grained fingerprints. Alternative ways that 

have comparable performance or can provide complementary 

aid to existing techniques are being explored. The visual-based 

localization method, which leverages environmental physical 

features (e.g., logos of stores, paintings on the walls) as 

reference objects has been proved useful in real-world 

deployments. To alleviate the efforts in building visual 

reference object database, photo crowdsourcing is used. Xu et 

al. [44] employ structure from motion (SfM) to build the indoor 

3D visual model from crowdsourced pictures, which is then 

used to solve the fingerprint ambiguity problem in indoor 

localization (two distinct locations may possess similar 

RF-fingerprints). Sextant [45] formulates visual reference 

object selection as a combinatorial optimization problem and 

proposes a heuristic algorithm based on iterative perturbation to 

enhance localization accuracy. CrowdSense@Place [46] 

identifies place categories (e.g., coffee shops, restaurants, 

meeting rooms) based on opportunistically collected photos 

and audio cues through smartphones. The place hints can be 

texts on signs or objects specific to an environment.  

E. Indoor Navigation 

Indoor navigation plays a significant role in complex indoor 

environments such as airports, shopping malls, and museums. 

A good indoor navigation system should supply the users with 

flexible navigation routes and user-friendly navigation 

instructions. Visual cues and image-based matching have been 

proved effective in indoor navigation, where VCS techniques 

have been found useful to lower the barriers to develop 

vision-based indoor navigation systems. iMoon [47] 

investigates the feasibility of utilizing crowdsourced data for 

building a smartphone-based indoor navigation system. It 

builds 3D models of indoor environment from crowdsourced 

2D photos. With 3D models, it supports image-based 

localization and provides visual navigation instructions that 

show when and where to turn. Travi-Navi [48] is a 

vision-guided navigation system that enables a self-motivated 

user to easily bootstrap and deploy indoor navigation services. 

It records high quality images during the course of a guider’s 

walk on the navigation paths, collects a rich set of sensor 

readings, and packs them into a navigation trace. The followers 

track the navigation trace, get prompt visual instructions and 

hints, and receive alerts when they deviate from the correct 

paths.  

F. Personal Wellness and Health 

TABLE I 
A SUMMARY OF MAIN VCS APPLICATIONS AND TECHNIQUES USED 

App type Name Modality Technical Contributions 

Object imagery 

and profiling 

CrowdMap[27], 

Jigsaw[28] 

Video, 

Image 

Floor plan generation 

Efficient image matching 

Photocity[8] Image 3D building modeling 

IndoorCrowd2D[30] Image Indoor scene construction, context-based quality estimation 

RDB-SC [33] Video/Image Reliable and diversity-oriented task allocation 

Visual event 

sensing 

Movi[13] 
Video Sensor-based data selection,  

Data understanding with crowd intelligence 

MoVieUp[37] 

MoViMash[36] 

Video Sensor-based data selection 

Content-based quality estimation 

InstantSense[34] Image Data selection, data understanding with crowd intelligence 

 Frey and Antone [38] Video View matching and camera alignment 

Disaster relief 
PhotoNet[7], SmartPhoto[25] 

SmartEye[41] 

Image Redundancy elimination,  

selective data transmission 

Localization 

Xu et al. [44] Image Indoor 3D modeling 

CrowdSense@Place [46] 
Image Everyday object recognition, 

Context-based quality estimation 

Indoor 

Navigation 

iMoon[47] Image Indoor 3D modeling, fingerprint-based image matching 

Travi-Navi [48] Image Content- & context-based quality estimation 

Public sensing 

PetrolWatch [51] Image Data selection 

VizWiz[52] Image Task allocation 

DietSense[53],  

MT-Diet[54] 

Image Image tagging/classification,  

Content-based quality estimation 

PublicSense[55] Image Data analysis and visualization 

SignalGuru[56] Video Sensor-enhanced object detection 

SakuraSensor[59] 
Video Object detection, 

location-based image grouping 

GigaSight [60] Video Scalable infrastructure, privacy protection 
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People are misled into paying high prices to products due to 

the search costs on attaining price information. There have been 

several VCS studies that try to address this issue. For instance, 

LiveCompare [49] and MobiShop [50] are systems that allow 

for grocery bargain hunting through crowd photographing. 

They use barcode decoding and GPS/GSM localization to 

automate the detection of product identity and store location. 

PetrolWatch [51] uses mobile camera phones to collect, process 

and deliver pricing information from petrol stations to potential 

buyers. The main contribution is automatic billboard image 

captured from a moving car without user intervention. VizWiz 

[52] is a crowdsourcing app that allows blind people to post 

picture-based queries and receive answers from remote workers. 

Posted fliers on community bulletin boards advertise services, 

events, and other announcements, which serves as an important 

function for public information sharing in modern society. 

FlierMeet [10] is a crowdsensing system for cross-space flier 

information photographing and intelligent tagging. Dietary 

patterns are recognized as contributing factors to many chronic 

diseases. Logging dietary habits in the form of daily journals is 

thus important. DietSense [53] supports the use of mobile 

devices for automatic photographing of dietary choices and 

efficient tagging of the dietary images for querying and 

browsing. MT-Diet [54] is an automated diet monitoring app 

that combines infrared and color images to recognize food 

types and provides feedback to promote healthy eating habits. 

G. Urban Sensing 

MCS has become an important way to achieve large-scale 

urban sensing. The modern city encounters numerous 

municipal problems that may impact human daily life, such as 

noise disturbance, road collapse and public facility damage, 

such as street lamps and manhole covers. PublicSense [55] is an 

image-based crowdsensing system that allows citizens to give 

instant reports about public facilities. It has potential 

application areas such as public facility management, urban 

infrastructure maintenance, intelligent transportation services, 

and emergency situation monitoring. Similarly, SeeClickFix is 

a web-based service designed to help citizens report 

non-emergency issues in their neighborhood. Local 

government officials receive alerts about submitted issues and 

give prompt responses. SignalGuru [56] leverages smartphones 

to opportunistically detect current traffic signals with their 

cameras, collaboratively communicate and learn traffic signal 

schedule patterns, and predict their future schedule. Pedestrians 

distracted by smartphones are easy to meet with various 

dangers. Existing works about pedestrian safety are mostly 

based on the sensing capabilities from a single device. The 

surrounding information that can be learned, however, is quite 

limited or incomplete. CrowdWatch [57] leverages mobile 

crowd sensing to characterize fine-grained nearby contexts and 

prompt users in dangerous situations. Environmental protection 

is another topic that benefits from crowd photographing. For 

example, CreekWatch [5] allows volunteers to report 

information about waterways in order to aid water management 

programs. Jam Eyes [58] uses cameras of drivers who can 

observe the causes of a jam (e.g., a broken-down truck in the 

middle of the street) and shares the pictures or short videos with 

drivers in the jam line. WreckWatch [9] allows bystanders and 

uninjured victims to take pictures using their smartphones and 

share them with first responders after the car crash happened. 

SakuraSensor [59] automatically extracts flowering-cherry 

routes information from videos recorded by car-mounted 

smart-phones and shares the information among citizens. 

GigaSight [60] is a crowdsourced first-person video collection 

framework that can be employed for lost-object finding and 

public safety management. 

V. RESEARCH CHALLENGES AND KEY TECHNIQUES 

In addition to the general issues of MCS systems such as 

incentives and task allocation, VCS has the following particular 

issues to be addressed. We present them in line with the 

working process of a VCS system. We also give a summary of 

the technical contributions of the major VCS applications 

described in Section IV, as shown in Table I. 

A. Diversity-oriented Visual Task Allocation 

Traditional MCS task allocation is based on point coverage 

[61, 62]. In contrast, VCS tasks are more about diverse aspect 

coverage and should consider multi-dimensional contexts in 

task allocation. For example, we should select workers from 

diverse directions and distances for a better characterization of 

an event in a VCS-based event sensing task. In other words, the 

optimization goal is to increase diversity in crowd-contributed 

data. A possible solution is to “decompose” a VCS task into a 

number of simple tasks (e.g., tasks with point coverage) 

according to the task constraints and human spatio-temporal 

distribution, and then allocate the tasks to the selected workers. 

Mobility prediction is important in task decomposition as we 

can use it to estimate the potential “point coverages”. 

Representative studies on human mobility prediction in mobile 

crowdsensing are investigated in [61, 63, 64]. 

Most VCS tasks are about static objects (e.g., SmartEye [41], 

SmartPhoto [25]). There are also dynamic sensing targets 

which have not been studied. Therefore, beyond 

“detection”-oriented VCS sensing tasks, “tracking” becomes 

another type of VCS tasks. For example, when a terrorist event 

occurs, observers may report a suspect vehicle to be tracked. 

We should use visual techniques to measure the context of the 

vehicle, such as moving direction, speed, and its multi-view 

appearance.  

The diversity needs can be represented as various task 

constraints. However, sometimes the various aspects of a task 

are difficult to determine as the task requesters are not familiar 

with the target or the constraint set cannot align well with the 

sensing contexts. In such cases, we may ask the task requesters 

to simply specify how many pictures they want to select from. 

Originally contributed data can be grouped and outliers (or 

noise data) can be filtered out by using crowd intelligence, as 

discussed in our previous work [65]. 

Various human-companioned mobile devices can be 

employed for sensing, including wearables, smartphones, 

vehicles, et al. This results in the device heterogeneity issue. 

For example, different devices have different capability on 



IEEE COMMUNICATIONS SURVEYS & TUTORIALS, 2017 8 

image/video quality and diverse network connections (e.g., 

2G/3G/4G, WiFi). Due to this highly dynamic nature, modeling 

and predicting the sensing capabilities of each node to 

accomplish a particular task is difficult. When there are a large 

number of available devices with diverse sensing capabilities, 

scheduling sensing and communication tasks among them 

under resource constraints will become more challenging [66].  

B. Incentives and Participant Reliability 

Incentive is a challenge to the human involvement in VCS. 

Without strong incentives, individuals may not be willing to 

participate in the sensing task with cost of their own limited 

resources. General purpose incentive mechanisms for MCS 

systems are reviewed in [67, 68]. There are additional 

requirements when designing incentive mechanisms for VCS 

systems. For example, it is crucial to guide people to capture 

pictures fulfilling the diversity needs of tasks. To motivate 

people to contribute data at specific places in MCS, [69, 70] 

displayed the rewarding points to users on the digital map. 

Their methods are related to point-coverage and cannot address 

the multi-dimensional coverage needs. As demonstrated by the 

studies such as PhotoCity [8], a well-designed user interface is 

important and can steer participants to attain high-quality 

sensing. For example, we can share with the participants 

detailed picture collection and payment dynamics, including 

the pictures collected by each participant, their shooting context 

and data quality, and payment results. Furthermore, Kawajiri et 

al. [70] use a point calculation method, where rewarding points 

for a place can be adjusted by learning crowd behaviors. This 

inspires us to develop adaptive utility measurement schemes, 

which may better steer people to cover less-popular aspects of a 

task.  

Existing monetary-based incentive studies (e.g., the reverse 

auction based methods) mainly encourage user participation, 

whereas sensing quality is often neglected. The reliability of 

recruited workers (e.g., sensing capabilities, and uncontrollable 

mobility) should also be considered. There are several potential 

ways to address this. First, it is important to build worker 

models that can characterize a worker from different aspects, 

such as skills, experiences, interests, mobility, and reputation. 

The model can be applied in task allocation to estimate 

participant reliability and select appropriate workers. For 

instance, Zhang et al. [71] use worker confidence to estimate 

the reliability of successfully completing the assigned sensing 

tasks, and study the maximum reliability task assignment under 

a recruitment budget. Cheng et al. [33] estimate worker 

capability and assign workers to visual spatial tasks (e.g., 

taking videos/photos of a landmark or firework shows) such 

that the completion reliability and the spatial/temporal 

diversities of spatial tasks are maximized. Second, to ensure the 

reliability of crowdsourced data, we can recruit ‘redundant’ 

workers to perform the same task and further aggregates their 

sensing reports for truth discovery, as demonstrated by [72] and 

[73]. Third, it is also useful to integrate data quality 

measurement in the incentive mechanisms to motivate 

high-quality task completion. For instance, TaskMe [65] 

leverages a combination of multi-facet quality measurement 

and a multi-payment enhanced reverse auction scheme to 

improve sensing quality. 

C. Data Selection and Redundancy Elimination 

One critical issue in VCS is data redundancy. Redundant 

data should first be grouped, and then representative picture(s) 

from each group should be selected for further processing. In 

[74], a formal task model is defined, and the requirements on 

data redundancy are predefined as task constraints. For 

example, the view directions are either single (e.g., object price 

[49, 50]) or multiple (e.g., an event [34, 13]), and the status of 

the target might change slowly (e.g. posted fliers [10]) or 

quickly (e.g. traffic signals [56]). A brief summary of the task 

constraints and relevant applications is given in Table II. In 

view of this, both the data grouping and selection process of 

VCS should adapt to the various task requirements.  

 
TABLE II 

SELECTION CRITERIA AND RELATED VCS APPLICATIONS. 

Task constraints Representative Applications 

Multiple shooting angle SmartPhoto [25], PhotoCity [8] 

Single shooting angle FlierMeet [10], LiveCompare [49], 

PetrolWatch [51] 

Change slowly SmartPhoto [25], PhotoNet [7] 

Change quickly SignalGuru [56], WreckWatch [9] 

Long/short shot distance InstantSense [34], TaskMe [65], 

MoViMash [36] 

 

There have been numerous studies on designing data 

selection schemes for VCS. For example, CrowdPic [24] 

proposes a generic picture collection framework that supports 

efficient picture grouping and redundancy elimination based on 

multi-dimensional task constraints. The pyramid-tree (PTree) 

algorithm is proposed to represent the task constraints and 

provide support for online crowdsourced picture grouping. 

Some VCS applications try to learn data selection strategies 

from human experience or professional knowledge. For 

instance, MoVieUp [37] incorporates a set of computational 

domain-specific filming principles summarized from a formal 

user study, e.g., the less shot switching principle and the 30 

degree rule (there should be at least 30 degrees’ difference 

between shooting angles) to avoid jump cuts in camera 

selection. MoViMash [36] is a framework that summarizes the 

video clips about an event from different shooting angles and 

distances. They have built a hidden Markov model to learn the 

experiences (e.g., decision making for shooting angle and 

distance selection, shot length and transitions) from 

professional editors.  

Another issue regarding data selection is that we should filter 

out noisy or irrelevant data. A simple and straightforward 

hypothesis is that if more participants report an observation, it 

is more likely that the observation is relevant, whereas objects 

with few observers can be treated as outliers. However, isolated 

pictures are not always irrelevant, and the relevant sensing 

targets may locate in the places with few observers. There have 

been several studies that address this issue. In TaskMe [65], 

data utility or usefulness is measured by predefined task 

constraints while not by the clustering results. In PhotoNet [7], 



IEEE COMMUNICATIONS SURVEYS & TUTORIALS, 2017 9 

a picture is treated as an outlier, if it is geographically 

collocated with a popular picture cluster, but is visually 

different from the group. Otherwise, the singleton item is 

viewed as a rare item that is useful but has few observers. 

Generally speaking, data selection is conducted offline at the 

server side. However, sometimes it should be done online in the 

client-server data transmission process, as discussed in the next 

subsection. 

 
TABLE III 

COMMUNICATION REQUIREMENTS IN VCS SYSTEMS. 

Name Requirement Solution 

CARE[40] Low computation cost Quality-based data 

selection 

PhotoNet[7] High data utility under 

limited storage capacity 

Data selection based on 

spatio-temporal and visual 

difference 

SmartPhoto[25] High data utility Data selection based on 

sensing context difference 

SmartEye[41] High data utility Data selection based on 

sensing context difference 

CooperSense[39] Low computation cost Opportunistic collaboration 

and data selection 

Piggyback 

crowdsourcing[76] 

Energy-efficient data 

transmission 

Piggyback crowdsourcing 

EMC3[77] Energy-efficient data 

transmission 

Participant behavior 

prediction-based task 

assignment 

Xiao et al. [78] Energy-efficient data 

transmission 

Static node cooperation 

EnUp [79] Energy-efficient data 

transmission 

Networking condition 

prediction 

Sun and Liu 

[80] 

Load-balancing and 

reliable communication 

Congestion-aware 

D2D-enabled incentive 

mechanism 

Dong et al. [81] Reliable and 

energy-efficient 

communication 

Representative node 

selection mechanism 

Wu et al. [82] Reliable data transmission Hybrid routing scheme 

 

D. Opportunistic Visual Data Transmission 

Due to the limitations of communication bandwidth, storage 

and processing capability, it is a challenge to transfer the huge 

amount of crowdsourced pictures. Delay tolerant networks 

(DTNs) [75] have been proved a promising way to deliver data 

in poor network environments. However, even with DTN, how 

to save networking resources still poses numerous challenges. 

To attain efficient and timely delivery of crowdsourced pictures, 

the primary issue is to determine the value of the pictures based 

on their significance and redundancy, and only upload those 

valuable ones. As discussed earlier, a good visual coverage 

usually requires multiple views of the sensing target. We thus 

should measure the utility of a picture considering the unique 

aspect(s) it covers. The measured picture utility should be used 

as the inputs of data transmission protocols to enable efficient 

visual data transmission. 

CARE [40] leverages image similarity detection algorithms 

to eliminate similar-looking pictures in picture delivery. Three 

state-of-the-art computer vision algorithms, including SIFT, 

pHash and GIST, are applied to balance the tradeoff between 

accuracy and computational cost. PhotoNet [7] is a picture 

delivery service that prioritizes the transmission of pictures by 

considering the spatio-temporal and visual difference. It aims to 

solve the diversity optimization problem by choosing a subset 

of objects whose total coverage is maximized, subject to some 

aggregate resource constraints (e.g., storage capacity). Wu et al. 

[20] propose a resource-aware photo crowdsourcing framework 

in DTN, which uses picture contexts such as location, 

orientation to build a photo coverage model and estimates 

picture utility. A photo selection algorithm is proposed to 

maximize the value of selected pictures, considering both point 

and aspect coverage. SmartPhoto [25] quantifies the quality of 

crowdsourced pictures based on the accessible geographical 

and geometrical info including the smartphone’s orientation, 

position, and all related parameters of the built-in camera. Both 

the Max-Utility problem and Min-Selection problem are 

studied and greedy algorithms with theoretical performance 

bounds are proposed. SmartEye [41] implements QoS-aware 

in-network deduplication based on the software-defined 

networks (SDN). Two optimization schemes are developed, 

namely semantic hashing and space-efficient filters. 

CooperSense [39] proposes a local smartphone cooperation 

method to identify unique and high quality data for 

transmission. A summary of the communication requirements 

and relevant solutions of the major VCS systems discussed in 

this paper is given in Table III. 

E. Energy-Efficient and Reliable Communication 

Participation in VCS systems can easily expose users to a 

significant drain on limited battery resources of users’ mobile 

devices. To maintain large-scale user participation, VCS 

system designers should minimize the energy consumption 

mainly due to the data transmission process between mobile 

clients and the backend server. Piggyback CrowdSensing (PCS) 

[76] is an energy-efficient MCS system that can intelligently 

leverage the opportunities for data collection that frequently 

occur during everyday smartphone user operations, such as 

placing calls or using applications. The EMC
3
 framework [77] 

reduces energy consumption in data transmission by 

incorporating human behavior prediction (e.g., calls and human 

mobility) and intelligent task assignment. [78] propose a 

static-node-assisted data transmission protocol to attain 

energy-efficient opportunistic data transmission in 

crowdsensing systems. By forecasting network connections 

and smartphone usage, [79] intelligently schedule the data 

transmission process to minimize the overall energy 

consumption. 

Reliability is another crucial requirement when deploying 

VCS systems in the real world. For example, the 

communication performance of crowdsensing may deteriorate 

in some high-density areas (e.g., shopping malls, and central 

business district streets) due to the overwhelming 

communication requests, whereas the wireless bandwidth in 

other areas may not be fully utilized with infrequent 

communication requests. To address this, [80] proposes a 

congestion-aware D2D (device to device)-enabled incentive 

framework to achieve efficient load balancing and provide 
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real-time reliable communications in mobile crowdsensing. [81] 

studies the reliability and energy efficiency requirements as a 

whole and proposes a node-selection-based event data 

collection approach to meet both needs. [82] presents a hybrid 

routing scheme in vehicular networks for inter-vehicle, 

vehicle-to-roadside and inter-roadside data dissemination in 

urban hybrid networks, which can guarantee the reliability of 

data dissemination under various networking environments. 

F. Lightweight Image Matching and Processing 

As is for visual crowdsensing, image processing and 

computer vision techniques are indispensable to VCS. 

However, to increase the efficiency on processing large-scale 

crowdsourced pictures, lightweight and robust computer vision 

techniques should be introduced. We group diverse VCS tasks 

into image matching, 3D modeling, image tagging, and 

text/sign recognition, as discussed below. 

Image matching is frequently used in VCS for redundancy 

detection [7, 24] or reference object identification (e.g., store 

logos, information desks) in visual-based localization or 

navigation [44, 46]. In image processing, there are two popular 

image feature vector extraction algorithms, namely SIFT (Scale 

Invariant Feature Transform) and SURF (Speeded Up Robust 

Features) [22]. Experiments show that SURF is much faster 

while achieving comparable accuracy to SIFT [30]. According 

to this finding, CrowdMap [27] uses Histogram of Oriented 

Gradients (HOG) [83] descriptor computing algorithm to select 

key video frames and then uses SURF for efficient image 

matching. Other methods for fast image matching are also 

studied. For example, Travi-navi [48] adopts the ORB 

algorithm as it is faster than SURF and SIFT and can extract 

image features in real time on mobile devices. CrowdPan360 

[31] represents an image with a short bit string (called image 

fingerprinting), which can capture the perceptual features of the 

image. They use the perceptual hash algorithm [84] to generate 

fingerprints. To accelerate image matching, picture grouping is 

often used. FOCUS [35] compares the geometric (line-of-sight) 

relationship between the content of videos. A strong geometric 

overlap in a pair of videos indicates that they both capture the 

same subject. 

3D modeling that reconstructs scenes or views of an 

environment has been widely used for indoor mapping and 

localization. Most of current SLAM (simultaneous localization 

and mapping [85])-based indoor scene reconstruction 

techniques (e.g., Google Cartographer
2
 and Xsens Scannect 

[86]) require specialized equipment to capture indoor scenes 

and have poor scalability. Different from SLAM, 

Structure-from-Motion (SfM) techniques [87] enable 3D 

modeling of surrounding environments using unordered 2D 

pictures. A typical SfM pipeline includes three steps: feature 

extraction, feature matching, and bundle adjustment. Highly 

distinctive features are first extracted from images using 

algorithms like SIFT.  Image matching is then conducted over 

the features between image pairs. The matches are finally used 

as the input for the bundle adjustment component for producing 

 
2 https://github.com/googlecartographer  

optimal estimates of camera poses and the locations of 3D 

points. The typical implementations of SfM include 

VisualSFM [88] and Bundler [89]. Based on SfM, Agarwal et 

al. [90] construct 3D models of Rome from 150K photos found 

from Internet photo sharing sites. [47] [35] [28] take 

crowdsourced photos as the input to build 3D models of the 

indoor space of interest using SfM techniques. To decrease 

computation load in SfM, iMoon [47] introduces density-based 

3D model partitioning and fingerprint-based partition selection. 

Image tagging facilitates grouping and browsing of 

crowdsourced pictures. DietSense [53] explores standard image 

processing techniques, including dominant color analysis [91] 

and histogram Kullback-Leibler (K-L) divergence [92], to tag 

and cluster crowdsourced food-pictures. For example, the 

dominant color analysis of images is effective for place tagging, 

e.g., pictures that are primarily blue or green largely correspond 

to outdoor environments. 

Photos taken from real-world environments usually contain 

signs and descriptive texts. Such information is useful for a 

number of VCS tasks, such as place categorization and 

localization, by applying sign recognition and optical character 

recognition (OCR) techniques to extract information from 

pictures. For example, CrowdSense@Place [46] uses a 

commercial OCR engine to extract written texts from posters or 

signs within places. In [31], Microsoft’s stroke width transform 

algorithm [93] is used for identifying texts (e.g., departments, 

cafeteria, and street names) in crowdsourced images. 

G. Picture Quality Estimation 

Although VCS provides a cheap way of collecting pictures of 

interesting targets, there are always uncertainty issues 

regarding the quality of user-contributed data. For example, a 

user-captured picture can be blurry or has undesired brightness. 

The target may also be blocked by unexpected obstacles. 

Therefore, we should estimate the quality of crowdsourced 

pictures and eliminate low-quality ones. There are several 

potential ways to estimate data quality. 

Content-based quality estimation. MoViMash [36] develops 

an edge-density based method to detect videos with occluded 

views. It is based on the assumption that the pictures with 

object occlusions will result in lower edge density than the 

original one in event sensing. Similarly, Travi-Navi [48] uses 

the number of detectable ORB features in images as the quality 

metric to quantify the image quality in terms of blurs. 

DietSense [53] employs the Roberts cross edge detection 

algorithm [94], where “edgy” pictures (by counting the number 

of computed black pixels) were filtered as they may contain 

homogeneous environments (e.g., walls, empty desks, pictures 

of the floor). SmartPhoto [25] uses Depth-of-Field (DOF) to 

determine if the target is out of focus. If the target falls into the 

DOF, the photo is considered valid.  

Context-based quality estimation. Movi [13] selects videos 

with a good view that have high accelerometer reading rankings 

and light intensity detected by embedded sensors in 

smartphones. FlierMeet [10] proposes an approach that uses 

crowd intelligence to determine the best shooting angle to the 

target (e.g., fliers posted on boards). To deal with blurry images 
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caused by vehicle vibrations in [51], a set of pre-selection 

thresholds based on the measures from embedded 

accelerometer of the mobile phone are designed. 

Hybrid feature-based quality measurement. There are also 

studies that try to integrate content and context features to 

augment quality estimation in VCS tasks. In IndoorCrowd2D 

[30] and Travi-Navi [48], real-time data quality feedback 

mechanisms are implemented to guide users to provide high 

quality data. The metrics are measured by processing the sensor 

data and the image data in real time, including linear 

acceleration, angular acceleration and the number of SURF 

features in each picture. If the prior two values are beyond a 

certain threshold, it indicates that the user either moves or turns 

too fast. If the number of SURF features falls below a 

predefined threshold, this exhibits that the user shoots 

feature-less objects, such as walls. 

H. Large-Scale Visual Data Understanding 

The inherent nature of crowdsensing makes it challenging to 

analyze and understand large-scale crowdsourced data. To 

ensure efficient visual data mining and understanding, there are 

two potential research directions. 

Novel machine learning methods. Large-scale image 

classification has recently received significant interest from the 

computer vision and machine learning communities. Several 

large-scale visual data sets have been created. For instance, 

ImageNet
3
 consists of more than 14M images labeled with 

almost 22K concepts [95], and the Tiny image data set consists 

of 80M images corresponding to 75K concepts [96]. In their 

pioneering work, Lin et al. [97] employ high-dimensional 

image descriptors in combination with linear classifiers to 

ensure computational efficiency in large-scale image 

classification. In the survey paper about the ImageNet data 

challenge Large-Scale Visual Recognition Challenge 

(ILSVRC), Russakovsky et al. [98] review the novel methods 

developed regarding the large-scale data mining tasks. Akata et 

al. [99] benchmark several SVM objective functions (e.g., 

one-versus-rest, ranking, and weighted approximate ranking) 

for large-scale image classification over the ImageNet data set. 

They find that one-versus-rest is simple and can be easily 

parallelized to address the large-scale data processing issue, 

and by using SGD (stochastic gradient descent)-based learning 

algorithms, ranking-based approaches can also scale well to 

large data sets. Deep learning methods, such as Convolutional 

Neural Networks (CNNs) have also been demonstrated as an 

effective class of models for large-scale image content 

understanding [100]. It has also been demonstrated useful when 

applied on large-scale video classification, using a new data set 

of 1 million YouTube videos belonging to 487 classes [101]. 

The integration with crowd intelligence. For many 

problems about image understanding, humans can still perform 

more accurately and efficiently than a machine. We notice that 

the knowledge hidden in the process of data generation, 

regarding individual or crowd behavior patterns are neglected 

in crowdsourced data mining. We intend to address the 

 
3 http://www.image-net.org 

challenge from a new perspective: harnessing the power of 

crowd intelligence to better understand large-scale 

crowdsourced data. There are several representative studies that 

use crowd intelligence. FOCUS [35] leverages shared content 

recognition by the overlap of line of sight to guide view 

selection in crowdsourced video mashup. Movi [13] reports 

how to use crowd behavior patterns to identify potential social 

interests in a social activity (e.g., a party). It designs two types 

of human intelligence, including specific event signatures (e.g., 

laughter, clapping, and shouting) and group behavior patterns 

(e.g., group rotation, acoustic-ambience fluctuation). Note that 

the usage of crowd intelligence does not necessarily replace the 

role of image processing algorithms, but is to serve as an 

important complement to improve the utility of the collected 

photos, especially when resources are constrained. 

VI. INSIGHTS AND FUTURE DIRECTIONS 

Having presented the challenges and key techniques 

developed to addressing various issues in VCS, this section 

discusses our insights for the future research directions of VCS. 

A. A Generic VCS Framework 

Existing VCS systems usually only support one specific task 

(e.g. river pollution monitoring [5] and disaster/event picture 

collection [7, 40, 41]). This leads to reusability and scalability 

limitations as these systems are application-dependent. 

Regarding the challenges and techniques presented in the 

previous section, we have proposed a generic framework for 

VCS. The motivation for building a generic framework for 

VCS is inspired by MTurk [17], and has the following merits. 

First, this framework facilitates the rapid specification of 

VCS tasks taking into consideration different constraints, 

eliminating the need to develop domain-specific, 

application-dependent proprietary systems. Second, it lowers 

the barrier for regular users to publish VCS tasks and meet their 

personalized needs. Third, it provides mobile users with a 

unique way to access VCS tasks, which can simplify participant 

recruitment and data consumption. 

 

Fig. 5. A generic VCS framework 
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The layered client-server architecture of the framework is 

illustrated in Fig. 5. At the mobile client side, visual content and 

video clips are captured by the crowd according to task needs. 

The data transmission layer defines low-cost client-server 

transmission protocols that are particularly important for visual 

data collection using smartphones. The backend-server side 

incorporates three layers: the visual data collection layer, the 

data processing layer, and the application layer. 

 Visual data collection. Diversity-oriented task allocation 

is responsible for task decomposition and assignment 

regarding various task constraints and spatio-temporal 

participant distribution. Crowd management maintains the 

profile and real-time contexts of participants. Visual 

context sensing extracts contexts about crowd-object 

interaction (e.g., picture shooting). 

 Data processing. The data selection component is 

responsible for selecting representative data according to 

task constraints. The redundancy elimination module 

groups crowdsourced pictures and identifies redundancy 

at both content and semantic levels. The quality 

estimation component filters low-quality pictures with 

context- and content-based techniques. Finally, to 

facilitate large-scale data understanding, various types of 

crowd intelligence are extracted from crowd-object 

interaction patterns. 

 Applications. It makes use of the high-quality 

crowd-contributed data in various application areas, as the 

ones presented in Section IV.  

It should be noted that VCS are essentially crowd-powered 

mobile camera networks. Though there are quite a few 

differences, we can still learn much from well-studied static 

camera networks [102]. For example, many challenges 

discussed in this paper, including low-cost communication 

[103], sensing coverage optimization [104], and efficient visual 

data processing [105], have also been investigated in traditional 

camera networks. Furthermore, the sensing capabilities of static 

and mobile camera networks are often complementary. For 

example, regarding event sensing, stationary cameras can 

deliver high-quality, near real-time data, while mobile cameras 

can significantly enhance event sensing coverage and data 

diversity. In other words, different types of sources can capture 

different aspects of a sensing target, and thus complementary 

data should be collected from each source to generate a 

complete picture.  

As a promising extension of the VCS framework, we should 

investigate the integration of stationary camera networks with 

VCS, i.e., the building of collaborative sensing systems with 

both pre-deployed cameras and mobile cameras. In D-CPSS 

[106], a collaborative sensing layer is incorporated in the 

proposed data-centric framework for cyber-physical-social 

systems. It is used to manage the scheduling and cooperation of 

the selected sensing sources according to the dynamics of the 

sensing task. [107] studies the full view coverage problem in 

heterogeneous camera networks, i.e., a combination of 

stationary and mobile camera networks. The collaboration of 

mobile and static sensing nodes can also contribute to 

high-performance data transmission. For example, [108] 

propose a static-node-assisted adaptive data dissemination in 

vehicular networks, which can be used to lower data 

dissemination latency. [78] also investigates the deployment of 

static nodes to enable energy-efficient data transmission in 

crowdsensing. 

B. Embracing Mobile Edge Computing 

When deploying large-scale VCS systems in the real-world, 

we should particularly consider communication issues, such as 

scalability and delivery latency. For example, for crowdsourced 

video collection, a key challenge is the high cumulative data 

rate of incoming videos from many users to the backend server 

(in the cloud). Without careful system design, it could easily 

overwhelm the capacity of networking paths to the centralized 

cloud infrastructure, considering that 12,000 users transmitting 

1080p video would require a link of 100GB per second. 

Mobile Edge Computing (MEC) is a new paradigm that 

reforms the cloud hierarchy by placing computing resources, 

referred to as cloudlets, at the Internet’s edge in close proximity 

to mobile devices [109,110]. MEC has been recognized by the 

European 5G PPP (5G Infrastructure Public Private Partnership) 

research body as one of the key emerging technologies for 5G 

networks [111]. The major aims of MEC are to reduce latency, 

ensure scalable network operation and service delivery, and 

offer an improved user experience. There are several merits by 

integrating MEC with VCS systems, some of which are closely 

related to the aforementioned research challenges. 

First, the cumulative network-bandwidth demand into the 

cloud from a large collection of high-bandwidth mobile 

cameras can be considerably lowered, if the raw data is 

analyzed on cloudlets and only the extracted information or 

metadata [112,113] is transmitted to the cloud. Simoens et al. 

[60] propose a scalable system for continuous collection of 

crowdsourced videos from mobile devices. It achieves 

scalability by decentralizing the collection infrastructure using 

cloudlets based on virtual machines. 

Second, the privacy issue can be mitigated. By serving as the 

first point of contact in the infrastructure, a cloudlet can enforce 

the privacy policies of its owner prior to the release of the data 

to the cloud [109]. A user should be able to delete or denature a 

subset of sensor data she deems sensitive [60,114]. Denatured 

sensor data becomes safe to release, e.g., faces in images can be 

blurred, sensor readings can be coarsely aggregated, etc.  

Third, real-time context-aware computing (e.g., human 

behavior/mobility prediction, the sensing context learning) is 

important in VCS systems. This is challenging when running 

on resource-constrained mobile devices. MEC can facilitate 

efficient context-aware computing by allowing mobile devices 

to outsource their computation to the upper-layer cloudlets 

[115]. 

C. Augmented Data Understanding with Crowd Intelligence 

We have presented the usage of crowd intelligence to 

facilitate large-scale crowdsourced data understanding. It is 

useful for at least the following task types, and a summary is 

given in Table IV. 

 Data filtering. Filtering our noisy or low quality data. 
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 Data classification and tagging. Categorizing the data or 

assigning tags to the data. 

 Data clustering & segmentation. Grouping redundant data. 

For evolutionary objects such as events, it is often 

important to segment the data stream. 

 Data selection. Selecting representative data from the 

redundant data set. 

 
TABLE IV 

 UNDERSTANDING OF CROWDSOURCED DATA WITH CROWD INTELLIGENCE. 

Task type Related work The usage of Crowd 

Intelligence 

Filtering Data quality measurement [10] Aggregated shooting 

behaviors 

Classification & 

Tagging 

Flier tagging [10],  

Place categorization [46, 116] 

Group structure, 

Crowd-object interaction 

patterns 

Clustering 

& Segmentation  

Highlight detection [13], 

 

Subevent detection [34] 

Group behavior patterns 

(rotation, laughing),  

Individual/Crowd 

photographing patterns 

Data selection Redundancy elimination [24], 

Event summary [34] 

Picture shooting contexts 

 

 

Crowd intelligence can be applied directly or indirectly for 

understanding crowdsourced data. When used directly, it often 

acts as the parameter input of a decision making function (e.g., 

data selection or filtering). For example, FlierMeet [10] use the 

central-tendency of crowd picture shooting angles as the 

parameter input of a data-filtering function for picture quality 

measurement. Movi [13] use group behavior patterns to 

identify potentially interesting scenes in social events. When 

used indirectly, crowd intelligence is normally integrated with 

MI, via data mining or machine learning algorithms. It can be 

used as important features of machine learning algorithms (e.g., 

clustering or classification methods). For example, crowd 

shooting patterns have been used for event segmentation in 

InstantSense [34]. Crowd-contributed visual cues can be used 

to recognize the ambient contexts of places [116]. 

There are several interesting directions to be investigated 

further in the future, as discussed below. 

 The scope of crowd intelligence. The major types of 

crowd intelligence presented in this paper include crowd 

behavior patterns, crowd-object interaction patterns, and 

so on. Crowd intelligence has a wide scope in terms of 

cognitive abilities, individual attributes, social features, 

interaction and behavior patterns. It is crucial to 

characterize them and investigate their usage in 

crowdsourced data mining. 

 The emergence of crowd-machine computational 

systems. Crowd intelligence is used as feature inputs for 

machine learning and data mining algorithms. With the 

manifold efforts of embedding human intelligence in 

computing systems, we will finally build crowd-machine 

computational systems. The complementary features of 

crowd and machine intelligence should be further 

explored and new integration or collaboration manners 

should be studied. 

D. Unique Privacy Issues 

The VCS data consists of the participant’s context and the 

visual content. The former one mainly exposes the participant’s 

privacy, which is similar to other forms of MCS apps. However, 

compared to the other types of crowdsensed data, visual 

contents in VCS can expose both participant’s and the 

passerby’s privacy. The privacy information exposed by 

leveraging context learning and visual content understanding 

may include human’s location, identification, occupation, 

activity, hobby, etc. We first characterize the two diverse 

privacy concerns below. 

(1) Participant privacy. Privacy leakage concern is one of 

the problems that prevent people from participating in VCS 

tasks, which we call the participant privacy concern. To this 

end, most VCS tasks use monetary rewards in return for people 

to contribute data. To motivate user participation, we should 

also explore new techniques to protect personal privacy while 

allowing their devices to reliably contribute data. One such 

effort is the AnonySense architecture proposed by Cornelius et 

al. [117], which supports the development of privacy-aware 

applications based on crowd sensing. Other techniques on 

participant privacy protection in crowdsensing have also been 

reviewed in [118].  

(2) Third-person privacy. People and objects in public areas 

can be unintentionally captured by VCS task workers, which 

can reveal the privacy information beyond the picture-taker. In 

some emergency (e.g., disaster relief or public safety) or social 

(e.g., a party) occasions, people might not be that sensitive to 

data privacy because we have trusted picture-takers and 

‘controllable’ or ‘predictive’ data usage. For instance, Movi [13] 

assumes that attendants in a social party may share mutual trust, 

and hence, may agree to collaborative sensing and data sharing. 

However, in other occasions, we should protect the privacy of 

the passersby and other sensitive objects. There are at least two 

critical issues to be addressed, regarding how to identify the 

sensitive information and how to avoid the exposure of it. 

Though there are still not technical standards for dealing with 

these issues, there are several promising methods to be 

leveraged, as discussed below. 

 Intentional image blurring. People’s face and vehicles’ 

plate number are usually sensitive information in images. 

One common method used for privacy protection in visual 

systems is to blur certain parts of images. Google street 

view
4
 blurs the faces detected in the collected visual items 

for outdoor scene reconstruction. GigaSight [60] uses 

denaturing to protect the privacy of people in videos, such 

as blurring all faces or only a subset of faces from a given 

list. The referred computer vision techniques to enable 

this include face detection, face recognition, plate number 

recognition, and object recognition in individual frames or 

images. Beyond faces and vehicle plate number that have 

common consensus from people, there can be other 

sensitive information, such as special human activities, 

brands, and sensitive sites. It is difficult to pre-define such 

situation-specific privacy objects. Domain knowledge or 

 
4 http://www.google.cn/maps/ 
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human efforts are often needed to address these issues. 

 Non-visual information extraction. Some applications 

need the visual information of sensing targets (e.g., flower 

blooming [59], events [34, 13]), while sometimes we only 

need the semantic information extracted from the pictures 

(e.g., object prices [50], traffic signals [56]). Therefore, it 

is not always necessary to deliver complete pictures to 

task requesters. For example, MobiShop [50] extracts 

texts on shopping bills using the OCR technology. In such 

cases, image processing can be conducted at the client or 

server side and only the information distilled should be 

delivered to the task requesters. This can rely on 

commonly-used image processing techniques, such as 

object recognition, OCR, image tagging.  

Beyond these discussions, it is also important to refer to 

existing solutions in visual sensor networks (e.g., camera 

networks) when addressing vision-related data privacy issues. 

A thorough survey has been given by Winkler et al. in [119]. 

E. Field Study and Experiments 

As a crowd-driven research field, how to conduct 

experiments to validate the techniques/approaches is a 

challenge. We first make a summary of the existing methods 

used for VCS evaluation, as shown in Table V. 

From the summary given in Table V, we can derive the 

following conclusions and guidelines for evaluation of 

VCS-related techniques. 

 Combined manners for evaluation. Crowdsensing by 

recruiting large-scale participants is of high cost. 

Therefore, we can find that most VCS studies have only 

limited participants. Therefore, simulations are usually 

employed for large-scale studies. Though, there are many 

parameters in visual crowdsensing that are difficult to 

simulate, and there still lacks a generic simulation tool for 

VCS research. Compared to simulations, field studies with 

real-world deployments can better validate the 

effectiveness of the methods/techniques used and identify 

the problems that are not easy to be found in experimental 

environments. To demonstrate the robustness and 

usability of the methods in different environments, some 

works conduct two more field studies [30, 13, 36, 44]. 

 Long-term, large-scale field studies. Though a few VCS 

studies have chosen to conduct field studies in buildings 

[30, 47], shopping malls [44], or university campus [10] to 

validate their system, the scale of these studies is still 

limited due to the high cost. In the future, it is better to 

publish the tasks as smartphone applications to have wide 

participation of people. For online crowdsourcing, there 

have been studies for testing in commercial platforms, 

such as MTurk [17]. There have also been some startups 

of MCS platforms (e.g., Ohmage
5
), and it is promising to 

conduct experiments by collaborating with such 

platforms. 

 Leveraging online crowdsourced data. Though it is 

difficult to collect real-world data sets with a large number 

 
5 http://ohmage.org/, accessed: Feb. 4, 2016 

of participants, we find that several studies [34, 37] have 

employed the visual resources (pictures, videos) from the 

social websites (e.g., Flickr, YouTube). The benefit of 

using online resources is obvious as i) we can easily 

obtain rich open data [121-123], and ii) they are also 

crowdsourced resources and maintain major features of 

visual crowdsensing. However, online resources are 

mainly in contents while the metadata such as shooting 

contexts (e.g., shooting angle, shakiness) are not attached. 

Therefore, for some tasks that have multi-dimensional 

constraints, it should synthesize with simulation-based 

methods [7, 25]. 
TABLE V 

EXPERIMENT SETUP IN EXISTING VCS STUDIES. 

Name Method Participants and Data set 

Wu et al. [20] By simulation, randomly 

generate photos over real 

traces 

Mobility traces from Mixed Reality 

(100 people) and Cambridge06 data 

sets (36 people) 

SmartPhoto [25] A prototype App, 

Real world demo 

(100m*100m area) + 

extensive simulations 

30 photos of a building for the 

demo; Tens of targets randomly 

distributed, and thousands of 

“virtual” photos for simulation 

Xu et al. [44] Field study in a shopping 

mall and a food plaza 

More than 1000 photos are taken 

for the 50 and 41 POIs in the 

shopping mall and the food plaza 

iMoon [47] Field study in a real 

building (1100 m2) 

3D modeling generated from 2,197 

pictures 

IndoorCrowd2D 

[30] 

Field study in two 

buildings (a teaching 

building and a GYM) 

25 participants, 55,453 pictures 

contributed 

PhotoNet [7] Simulation over 

ONE[120] for a post 

disaster rescue mission in a 

town 

100 virtual participants, 1000 real 

pictures of different landmarks in a 

campus randomly tagged to the 

participants 

CARE [40] Simulation over 

ONE[120] over a town 

area for a disaster scenario 

50 virtual participants randomly 

located inside the simulated disaster 

area 

CrowdPAN360 

[31] 

Field study in a campus, 

five-week period 

10 participants, 6,000 more 

crowdsourced pictures about 70 

indoor/outdoor objects 

FOCUS [35] Field study in a football 

stadium, a two-month 

period 

70 participants, 325 video streams 

and 412 pictures 

Movi [13] Field study over a 

thanksgiving party and a 

smart-home tour 

A total of 21 participants 

InstantSense [34] Field study over two 

events in a campus and 

synthesized study with 7 

online videos 

A total of 328 event pictures by 21 

participants; Seven online event 

videos from Youku and eight 

participants for tagging 

FlierMeet [10] Field study in a campus, an 

eight-week period 

38 participants, 2,035 pictures 

about 921 objects in the campus 

MoViMash [36] Field study for three public 

performance events 

A total of 29 participants for video 

recording and 17 participants for 

user study 

MoVieUp [37] Synthesized study with 

online resources 

46 mobile recordings of six events 

collected from Youtube 
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VII. CONCLUSION 

This paper has presented visual crowdsensing (VCS), an 

emerging research area that leverages regular users to 

photograph the interesting targets using their smart phones in 

the real world. We clarify the main characters of VCS, 

including the generic work flow of VCS tasks, the definitions of 

task coverage and data redundancy, crowd-object interaction 

contexts in data collection, as well as the triple concept graph. 

We have made a summary and comparison of different types of 

VCS applications, including object profiling, dynamic event 

sensing, indoor localization or navigation, disaster relief, 

personal wellness, and urban sensing. The unique challenges 

faced by VCS as well as the main techniques/solutions are 

further studied, such as diversity-oriented task allocation, data 

selection and redundancy elimination, opportunistic visual data 

transmission, energy-efficient and reliable communication, 

quality estimation, and visual data understanding. Based on the 

reviewing of existing systems and the identified characters, we 

have proposed a generic framework for developing VCS 

systems. We finally discuss our insights for the future research 

directions and opportunities of VCS.  

There are several crucial and promising research directions 

of VCS. First, visual sensing can provide rich information 

regarding our working or living environments. Though there 

have been numerous attempts of leveraging the power of crowd 

to facilitate large-scale visual sensing, we believe that there are 

still various VCS-enabled applications that can be enriched, by 

integrating with different domains. Inspirations can be partly 

drawn from the existing studies in the image processing and 

computer vision community. Second, compared to other 

modalities of crowdsensing tasks, VCS faces many unique 

challenges and the study of some of them are still at the early 

stage. At least the following topics need further investigation: 

diversity-oriented visual task allocation, efficient visual data 

selection and processing methods, the embracing of Mobile 

Edge Computing techniques, the usage of crowd intelligence 

for visual data understanding, and third-person privacy 

protection schemes. Third, we anticipate the development and 

deployment of large-scale VCS systems in the coming years, 

which will help identify the practical issues and evaluate the 

performance of the proposed methods. 
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